
Calculate general performance metrics of a mrIML model
Source:R/mrIMLperformance.R
mrIMLperformance.Rd
Summarizes the performance of a mrIML
object created using
mrIMLpredicts()
in a way that allows for easy comparison of different models.
For regression models, root mean squared error (RMSE) and R-squared are
reported, while for classification models, area under the ROC curve (AUC),
Matthews correlation coefficient (MCC), positive predictive value (PPV),
specificity, and sensitivity are reported.
Arguments
- mrIMLobj
A list object created by
mrIMLpredicts()
containing multi-response models.
Value
A list with two slots:
$model_performance
: A tibble of commonly used metrics that can be used to compare model performance of classification models. Performance metrics are based on the test data defined duringmrIMLpredicts()
.$global_performance_summary
: A global performance metric: the average of a performance metric over all response models. MCC is used for classification models and RMSE for regression models.
Examples
mrIML_rf <- mrIML::mrIML_bird_parasites_RF
perf <- mrIMLperformance(mrIML_rf )
perf[[1]]
#> # A tibble: 4 × 8
#> response model_name roc_AUC mcc sensitivity ppv specificity prevalence
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Hzosteropis rand_fore… 0.863 0.520 0.913 0.880 0.581 0.265
#> 2 Hkillangoi rand_fore… 0.763 0.166 0.982 0.855 0.0952 0.116
#> 3 Plas rand_fore… 0.927 0.640 0.951 0.890 0.636 0.196
#> 4 Microfilaria rand_fore… 0.761 0.376 1 0.917 0.154 0.0980
perf[[2]]
#> [1] 0.4253448